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Classification of Poisson processes

homogeneous

inhomogeneous

standard fractional

(i) (Nh
λ(t)) (iii) (Nhf

α (t))

(ii) (N(t)) (iv) (Nα(t))
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The standard (non-fractional) case

(i) The homogeneous Poisson process (HPP) (Nh
λ(t)) with

intensity parameter λ > 0:

pλx (t) := P(Nh
λ(t) = x) = e−λt

(λt)x

x!
, x = 0, 1, 2, . . .

(ii) The inhomogeneous Poisson process (NHPP) (N(t)) with
intensity λ(t) : [0,∞) −→ [0,∞) and rate function

Λ(s, t) =

∫ t

s
λ(u)du.

For x = 0, 1, 2, . . ., the distribution of the increment is

px(t, v) := P{N(t + v)− N(v) = x} =
e−Λ(v ,t+v)(Λ(v , t + v))x

x!
.

Note that N(t) = Nh
1 (Λ(t)).
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The (inverse) α-stable subordinator
Let Lα = {Lα(t), t ≥ 0}, be an α-stable subordinator with
Laplace transform

E [exp(−sLα(t))] = exp(−tsα), 0 < α < 1, s ≥ 0

and Yα = {Yα(t), t ≥ 0}, be an inverse α-stable subordinator
defined by

Yα(t) = inf{u ≥ 0 : Lα(u) > t}.
Let hα(t, ·) denote the density of the distribution of Yα(t).
Its Laplace transform can be expressed via the three-parameter
Mittag-Leffler function (a.k.a Prabhakar function).

E [exp(−sYα(t))] = E 1
α,1(−stα), where

E c
a,b(z) =

∞∑
j=0

c jz j

j!Γ(aj + b)
, with

c j = c(c + 1)(c + 2) . . . (c + j − 1), a > 0, b > 0, c > 0, z ∈ C.
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Figure: Plots of the probability densities x 7→ hα(t, x) of the distribution
of the inverse α-stable subordinator Yα(t) for different parameter
α = 0.1, 0.6, 0.9 and as a function of time: the plot on the left is
generated for t = 1, the plot in the middle for t = 10 and the plot on the
right for t = 40. The x scale is not kept constant.
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The fractional case

(iii) The fractional homogeneous Poisson process (FHPP)
(Nhf

α (t)) is defined as Nhf
α (t) := Nh

λ(Yα(t)) for
t ≥ 0, 0 < α < 1. Its marginal distribution is given by

pαx (t) = P{Nλ(Yα(t)) = x} =

∫ ∞
0

e−λu
(λu)x

x!
hα(t, u)du

= (λtα)xE x+1
α,αx+1(−λtα), x = 0, 1, 2, . . .

(iv) The fractional non-homogenous Poisson process (FNPP)
could be defined in the following way:
Recall that the NPP can be expressed via the HPP:

N(t) = Nh
1 (Λ(t)).

Analogously define Nα(t) := N(Yα(t)) = Nh
1 (Λ(Yα(t)))
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The governing equation for the FNPP
We can define the marginals

f αx (t, v) := P{Nh
1 (Λ(Yα(t) + v))− Nh

1 (Λ(v)) = x}, x = 0, 1, 2, . . .

=

∫ ∞
0

px(u, v)hα(t, u)du

Theorem (Leonenko et al. (2017))

Let Iα(t, v) = Nh
1 (Λ(Yα(t) + v))− Nh

1 (Λ(v)) be the fractional
increment process. Then, its marginal distribution satisfies the
following fractional differential-integral equations (x = 0, 1, . . .)

Dα
t f

α
x (t, v) =

∫ ∞
0

λ(u + v)[−px(u, v) + px−1(u, v)]hα(t, u)du,

with initial condition f αx (0, v) = δ0(x) and f α−1(0, v) ≡ 0.
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Limit theorems for the Poisson process

Watanabe (1964): The compensator of Nh
λ(t) is λt, i.e.

Nh
λ(t)− λt is a martingale. (Watanabe characterisation)

One-dimensional central limit theorem

Nh
λ(t)− λt√

λt

d−−−→
t→∞

N (0, 1)

Functional central limit theorem: convergence in D([0,∞))
w.r.t. J1-topology to a standard Brownian motion (B(t))t≥0.(

Nh
λ(t)− λt√

λ

)
t≥0

J1−−−→
λ→∞

B

Functional scaling limit:(
Nh
λ(ct)

c

)
t≥0

J1−−−→
c→∞

(λt)t≥0
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Random time change and continuous mapping theorem

We have convergence in D([0,∞)) w.r.t. J1-topology to a
standard Brownian motion (B(t))t≥0.(

Nh
λ(t)− λt√

λ

)
t≥0

J1−−−→
λ→∞

B.

As B has continuous paths and Yα has non-decreasing paths, it
follows that(

Nh
λ(Yα(t))− λYα(t)√

λ

)
t≥0

J1−−−→
λ→∞

[B(Yα(t))]t≥0 .

(Thm. 13.2.2 in Whitt (2002))
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Cox processes: definition
Idea: Poisson process with stochastic intensity. (Cox (1955))

→ actuarial risk models (e.g. Grandell (1991))

→ credit risk models (e.g. Bielecki and Rutkowski (2002))

→ filtering theory (e.g. Brémaud (1981))

Definition

Let (Ω,F ,P) be a probability space and (N(t))t≥0 be a point
process adapted to (FN

t )t≥0. (N(t))t≥0 is a Cox process if there
exist a right-continuous, increasing process (A(t))t≥0 such that,
conditional on the filtration (Ft)t≥0, where

Ft := F0 ∨ FN
t , F0 = σ(A(t), t ≥ 0),

(N(t))t≥0 is a Poisson process with intensity dA(t).
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Cox processes and the FNPP

Is the FNPP a Cox process?

The FHPP is also a renewal process: handy criteria in Yannaros
(1994), Grandell (1976), Kingman (1964).

Construction of a suitable filtration: Nα(t) = Nh
1 (Λ(Yα(t))).

FNα
t := σ({Nα(s), s ≤ t})
F0 := σ(Yα(t), t ≥ 0)

Ft := F0 ∨ FNα
t
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A central limit theorem

FNα
t := σ({Nα(s), s ≤ t})
F0 := σ(Yα(t), t ≥ 0)

Ft := F0 ∨ FNα
t

Proposition

Let (N(Yα(t)))t≥0 be the FNPP adapted to the filtration (Ft)t≥0

as defined in previous slide. Then,

N(Yα(T ))− Λ(Yα(T ))√
Λ(Yα(T ))

d−−−−→
T→∞

N (0, 1). (1)

Proof: apply Thm. 14.5.I. in Daley and Vere-Jones (2008).
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Figure: The red line shows the probability density function of the
standard normal distribution, the limit distribution according previous
proposition. The blue histograms depict samples of size 104 of the right
hand side of (1) for different times t = 10, 109, 1012 for α = 0.1 to
illustrate convergence to the standard normal distribution.
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Figure: The red line shows the probability density function of the
standard normal distribution, the limit distribution according to previous
theorem. The blue histograms depict samples of size 104 of the right
hand side of (1) for different times t = 1, 10, 20 for α = 0.9 to illustrate
convergence to the standard normal distribution.
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Limit α→ 1

Proposition

Let (Nα(t))t≥0 be the FNPP. Then, we have the limit

Nα
J1−−−→
α→1

N in D([0,∞)).

Idea of the proof: According to Theorem VIII.3.36 on p. 479 in
Jacod and Shiryaev (2003) it suffices to show

Λ(Yα(t))
P−−−→

α→1
Λ(t), t ∈ R+

By the continuous mapping theorem we need to show

Yα(t)
d−−−→

α→1
t ∀t ∈ R+.

This can be proven by convergence of the respective Laplace
transforms:

L{hα(·, y)}(s, y) = Eα(−ysα)
α→1−−−→ e−ys = L{δ0(· − y)}(s, y).
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A scaling limit (one-dimensional limit)

Assume F0 = {∅,Ω}.

Theorem

Let (Nα(t))t≥0 be the FNPP. Suppose the function t 7→ Λ(t) is
regularly varying with index β > 0, i.e. for x ∈ [0,∞)

Λ(xt)

Λ(t)
−−−→
t→∞

xβ.

Then the following limit holds for the FNPP:

Nα(t)

Λ(tα)
d−−−→

t→∞
(Yα(1))β.
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A functional scaling limit

Assume F0 = {∅,Ω}.

Theorem

Let (Nα(t))t≥0 be the FNPP. Suppose the function t 7→ Λ(t) is
regularly varying with index β > 0, i.e. for x ∈ [0,∞)

Λ(xt)

Λ(t)
−−−→
t→∞

xβ.

Then the following limit holds for the FNPP:(
Nα(tτ)

Λ(tα)

)
τ≥0

J1−−−→
t→∞

(
Yα(τ)β

)
τ≥0

. (2)
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Proof

Using Thm. 2 on p. 81 in Grandell (1976), it suffices to show that(
Λ(Yα(tτ))

Λ(tα)

)
τ≥0

J1−−−→
t→∞

(
Yα(τ)β

)
τ≥0

1 Convergence of finite-dimensional distributions: By
self-similarity of Yα and Lévy’s continuity theorem. (Details in
the next slides)

2 Tightness: As τ 7→ Λ(Yα(tτ)) and τ 7→ Yα(τ) are
continuous and increasing. Thm VI.3.37(a) in Jacod and
Shiryaev (2003) ensures tightness.
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Proof (II)

Let t > 0 be fixed at first, τ = (τ1, τ2, . . . , τn) ∈ Rn
+ and 〈·, ·〉 denote the

scalar product in Rn. Then,

Λ(tαYα(τ))

Λ(tα)
=

(
Λ(tαYα(τ1))

Λ(tα)
,

Λ(tαYα(τ2))

Λ(tα)
, . . . ,

Λ(tαYα(τn))

Λ(tα)

)
∈ Rn

+

Its characteristic function is given by

ϕt(u) := E
[

exp

(
i

〈
u,

Λ(Yα(tτ))

Λ(tα)

〉)]
= E

[
exp

(
i

〈
u,

Λ(tαYα(τ))

Λ(tα)

〉)]
=

∫
Rn

+

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn

+

[
n∏

k=1

exp

(
iuk

Λ(tαxk)

Λ(tα)

)]
hα(τ1, . . . , τn; x1, . . . , xn)dx1 . . . dxn
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Proof (III)

We may estimate∣∣∣∣exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)

∣∣∣∣ ≤ hα(τ, x).

By dominated convergence

lim
t→∞

ϕt(u) = lim
t→∞

∫
Rn

+

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn

+

lim
t→∞

exp

(
i

〈
u,

Λ(tαx)

Λ(tα)

〉)
hα(τ, x)dx

=

∫
Rn

+

exp
(

i
〈
u, xβ

〉)
hα(τ, x)dx = E[exp(i〈u, (Yα(τ))β〉)].
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Figure: Red line: probability density function φ of the distribution of the
random variable (Y0.9(1))0.7, the limit distribution according to previous
Theorem. The blue histogram is based on 104 samples of the random
variables on the right hand side of (2) for time points t = 10, 100, 103 to
illustrate the convergence result.
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Proposition (The fractional compound Poisson process)

Let (Nα(t))t≥0 be the FNPP and suppose the function t 7→ Λ(t) is
regularly varying with index β ∈ R. Moreover let X1,X2, . . . be
i.i.d. random variables independent of Nα. Assume that the law of
X1 is in the domain of attraction of a stable law, i.e. there
exist sequences (an)n∈N and (bn)n∈N and a stable Lévy process
(S(t))t≥0 such that for

S̄n(t) := an

bntc∑
k=1

Xk − bn it holds that S̄n
J1−−−→

n→∞
S .

Then the fractional compound Poisson process

Z (t) := SNα(t) =
∑Nα(t)

k=1 Xk has the following limit:

(cnZ (nt))t≥0
M1−−−→

n→∞

(
S
(

[Yα(t)]β
))

t≥0
,

where cn = abΛ(n)c.



Definitions Limit theorems Application to the CTRW Summary and Outlook References

One-dimensional limit

The previous proposition implies for fixed t > 0

cn

Nα(nt)∑
k=1

Xk
d−−−→

n→∞
S((Yα(t))β)

In the one-dimensional case we can do better:

We do not need independence between N(t) and X1,X2, . . .
(Anscombe (1952))

Additionally, X1,X2, . . . can be mixing (Mogyoródi (1967),
Csörgő and Fischler (1973))
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Summary and Outlook

We gave a reasonable definition of a fractional
non-homogeneous Poisson process that fits into pre-existing
theory and results. ⇒ Other possible definitions of FNPP:
N1(Yα(Λ(t)))

We derived limit theorems for the FNPP ⇒ Parameter
estimation

Other related stochastic processes: Skellam processes,
integrated processes
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Thank you for your attention!
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